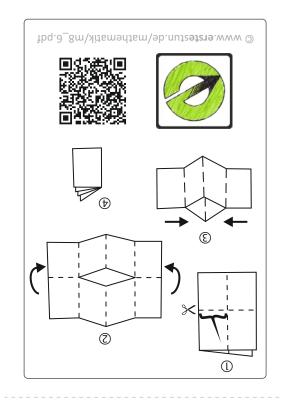
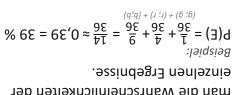
$\% 00\tau = 0'\tau = \frac{0\tau}{0\tau}$	οτ	əwwns
$\% 0S = S'0 = \frac{01}{S}$	S	(q) nejq
$\% 0Z = Z'0 = \frac{Z}{0I}$	7	(r) rot
$\% 08 = 8.0 = \frac{8}{01}$	3	(6) qjə8
relative Häufigkeit (Bruch / Dezimalzahl / Prozent)	absolute Häufigkeit	sind9g13

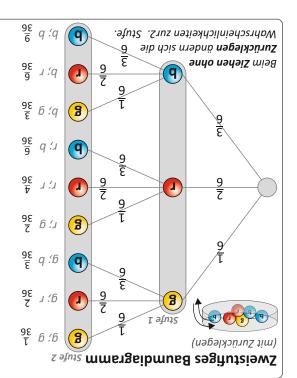
d d d d d d d

Wahrscheinlichkeiten bestimmen:


Glücksrad


Zufallsexperiment:

Zufall und Wahrscheinlichkeit



Summenregel
Um die Wahrscheinlichkeit für ein
Ereignis (z.B. E: zwei gleichfarbige
Kugeln) zu bestimmen, addiert
man die Wahrscheinlichkeiten der
einzelnen Ergebnisse

b(8; 8) =
$$\frac{1}{2} \cdot \frac{1}{2} = \frac{36}{2} \approx 0.03 = 3 \%$$

Produktregel
Um die Wahrscheinlichkeit für das
Ziehen von zwei bestimmten Kugeln zu bestimmen (z.B. gelb, gelb),
multipliziert man die Wahrscheinlichkeiten entlang des Pfades.

Laplace-Experimente

Pierre-Simon Laplace (1749 - 1827) französischer Mathematiker, physiker und Astronom

Zufallsexperimente, bei denen alle Ergebnisse **S** die gleiche Wahrscheinlichkeit **P** haben, heißen Laplace-Experimente.

(S: solutions: P: probability)

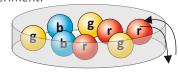
 $P(Ergebnis) = \frac{1}{Anzahl aller Ergebnisse}$

Zufallsexperiment:

Ergebnismenge:

Würfeln

wurtei


S = { 1; 2; 3; 4; 5; 6}

Wahrscheinlichkeit eine 4 zu würfeln:

$$P(4) = \frac{1}{6} \approx 0.17 = 17 \%$$

Urne

Ergebnisse nach 20 Mal Ziehen mit Zurücklegen:

 Urliste
 Strichliste

 g r r b g r b
 gelb (g): || || || || || ||

 r r g r b r b
 rot (r): || || || || ||

 g r g g b r
 blau (b): || || ||

Ergebnis	absolute Häufigkeit	relative Häufigkeit (Bruch / Dezimalzahl / Prozent)	
gelb (g)	6	6/20 = 0,3 = 30 %	
rot (r)	9	⁹ / ₂₀ = 0,45 = 45 %	
blau (b)	5	\$\frac{5}{20} = 0,25 = 25 \%	
Summe	20	20 = 1,0 = 100 %	

Ereignisse

Eine Teilmenge aller möglichen Ergebnisse kann als Ereignis **E** zusammengefasst werden. (E: event)

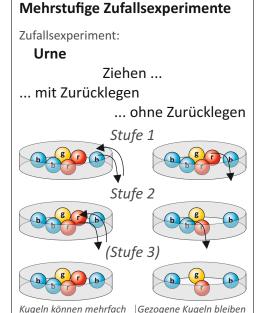
Zufallsexperiment:

Würfel

 $S = \{ 1; 2; 3; 4; 5; 6 \}$

E₁: eine gerade Zahl würfeln

 $E_1 = \{2; 4; 6\}$ $P(E_1) = \frac{3}{6} = 0.5 = 50 \%$


E₂: eine Zahl größer als 4 würfeln

 $E_2 = \{5; 6\}$ $P(E_2) = \frac{2}{6} \approx 0.33 = 33 \%$

E₃: eine Sieben würfeln

 $E_3 = \{ \}$ $P(E_3) = \frac{0}{6} = 0 = 0 \%$

P(Ereignis) = Anzahl günstige Ergebnisse
Anzahl aller Ergebnisse

gebnismenge bleibt gleich. menge wird kleiner.

draußen. Die Ergebnis-

gezogen werden. Die Er-